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T
iR Mu2e Student Lunch Talks e 4

@ Audience
undergrads and incoming graduate students

@ Purpose

familiarize newcomers with both the underlying physics and the
technical details of the Mu2e experiments

® Informal
Plan for a short overview of a topic, followed by questions and
discussion
Later, students can talk about what they’re working on.

We take requests.
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L.
38 Ancient History

@ The muon was originally discovered
1936 Anderson and Neddermeyer
while studying cosmic ray data

@ Hypothesized to be Yukawa’s
proposed mediator of the nuclear
binding force, but did not interact
strongly

Yukawa’s particle was the pion

: ?
® Excited electron? Michel e

52.8 MeV
If so, expect U —€+Y Na& o

Not seen!

© The muon was observed to decay to 4
electron+”something invisible” with
a spectrum consistent with a three i

body decay Energy [MeV]

Fast forwarding (and skipping a bunch of stuff)...
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T
28 Classical vs. Quantum Interactions (QED) “C'MUZ

@ Based on the work of Richard Feynman and others, we
now view the electric field as the discrete exchange of

photons.

Classical picture: charged
particles produce “fields”, which
exert forces on other particles

) \/e
P G oY
Ll < i (i e

“Feynman Diagram”

Quantum picture: charged particles
have a probability of exchanging
“virtual photons”

® If the probability is high enough, you exchange a lot of
photons and |[quantum = classical]again.
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L.
38 The Rest is History... 2

® QED became the basis for our models of the other
forces.

In quantum mechanics, a “force” is something that changes the
“state” of a particle, which can sometimes mean changing it into

another particle. _
QED Weak Interaction

Neutrino
, &

“W” (like a photon but
about 100 times as
heavy as the proton!)

e_/\\ - ‘I; /\\ ‘111 & Proton

@ And that’s just the beginning...

Mu2e Lunch Talk June 22, 2015 5



3¢ The Standard Model

Fermions Bosons

Combine
to form ™
hadrons
X0 (€= Mediate
interactions
Free ,, ) u Weak charged current

interactions “flip”
fundamental fermions
(analogous to spin flip)

LptonS Netrino mixing
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L, 3
2& The Standard Model o 4

@ We can generalize these Feynman Diagrams and change their
orientation to explain every type of particle interaction there is

n—=p+e +v,

e

beta decay
w 4 Y

e

i
—‘\‘—b u;
Ay ’I

‘
between quarks between nucleans Y ll -
) ’

Streng Interaction

eeT = uu
e . u
Y

e’ w

@ They’re literally the basis of everything we do here.
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T
38 Lepton Number and Lepton Flavor Number “C_M“ZA,

Both lepton number and lepton “flavor” (generation)

number are individually conserved® [ ] 1
e u
muon decay e e 1 1 0
[ 1, 1, / - v, -1 -1 0
wol 0 1 W_~ Ve |l v 1 01
total 1 0 1 T total 1 0 1
U v,u
CCQE
“_\/Vu
Ll [ 1, 1,
w v. 1 0 1
w 1 0 1 z
U Fd n 0 0 O
p 0 0 O pid- d 1N Lo
Vo tota
total 1 0 1 A .

*except in neutrino mixing
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JC
28 Charged Lepton Flavor Violation o 4

Neutral Current Scattering

Higher order dipole “penguin”:

: \/ K Virtual v mixing

V”_ % Ve

Flavor Changing Neutral

Current (FCNC):
u e © Observation of neutrino mixing shows
this can occur at a very small rate
@ Photon can be real (u->ey) or virtual
(uN->eN)
A @ Standard model branching ration

~0(102) (effectively zero)
® Forbidden in Standard Model
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T
38 Beyond the Standard Model

® Because extensions to the Standard Model couple the
lepton and quark sectors, Charged Lepton Flavor
Violation (CLFV) is a nearly universal feature of such
models.

® The fact that it has not yet been observed already
places strong constraints on these models.

@ CLFV is a powerful probe of multi-TeV scale dynamics:
complementary to direct collider searches

® Among various possible CLFV modes, rare muon
processes offer the best combination of new physics
reach and experimental sensitivity
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T
W

Generic Beyond Standard Model CLFV

Flavor Changing Dipole (penguin)
Neutral Current
U e @ Can involve a real photon
\@/

J

®Mediated by massive neutral Boson, e.g.
Leptoquark
77
Composite

@ Approximated by “four fermi
interaction”

v

Mu2e Lunch Talk June 22, 2015
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T
iR Decay vs. Conversion

® Only the “dipole”-like reactions can lead to a decay

? e
u \// u—>e+y
%Y

® However, if we capture a muon on a nucleus, it could
exchange either a virtual photon or other (unknown)
neutral boson with the nucleus
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W

Experimental Signature of u+N — e+N “Z Z e

 When captured by a nucleus, a muon will
have an enhanced probability of exchanging
a virtual particle with the nucleus.

« This reaction recoils against the entire
nucleus, producing a mono-energetic
electron carrying most of the muon rest
energy

(ne)

E, = muc2 = >
2myc ~105 MeV e ®

@ Similar to u—ey, with important advantages:
No combinatorial background.

Because the virtual particle can be a photon or heavy neutral boson, this
reaction is sensitive to a broader range of new physics.

@ Relative rate of u—ey and uN—eN is the most important clue
regarding the details of the physics

Mu2e Lunch Talk June 22, 2015

13



T
W

u—e Conversion vs. u—=ey

@ We can parameterize the relative
strength of the dipole and four fermi
interactions.

!

A ="mass scale" of intermediate particle(s)

Kk = relative strength of two terms (1 ~ equal)

Total rate o %

Mu2e Lunch Talk

June 22, 2015

10

1
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Example Sensitivities* e 4

x° W e
Supersymmetry <3 Compositeness
Predictions at 1015 g e A. =3000 TeV
q q
q q
_ N ] _ Second Higgs
Heavy Neutrinos H € doublet
UUo| =8x10 |8 § e
q q 9 9
Heavy Z',
Leptoquarks . d  u ’ ¢ Anomalous Z
coupling
L v.Z,Z
3000,/A A, TeVic? M, =3000 TeV/c*
d . e q . q

B(Z — pe)<10"

*After W. Marciano
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T
3 History of Lepton Flavor Violation Searches “:' z,

1
© 10 o=
E . vV o ey ..
2 v § o 51— 3e @ Best Limits
he v " N —eN R <7x10713 (Sindrum-Il 2006)
= L : Br(uey) < 2.4x10°'2 (MEG 2011)
10° —
n _ VY% .. = Br(u=>3e) < 1x10-'2 (Sindrum-I 1988)
"= Not quite e Y
we apples-to-apples, V' MEG Upgrade
10-15 :_ but_ .. @ PSI, MUSIC
- Mu2e, COMET =
1077 = ' -
T R T R R T

Year

[(u N(A,Z)— e +N(AZ)
Mu2e will measure: R, = (M )
[(uNAZ) — v, +N(AZ-D))

Goal: single even sensitivity of R .="a few"x10-""
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L I o 0 '
Limits of Previous Experiments CZe
u—>e Conversion: Sindrum Il

Cosmic mm all ¢ from target ©_Most backgrounds are
- cosmix stpprassed Brompt with respect to the
Background / eam

\ Caused either by production or
capture or muons

@ Previous experiments
suppressed these
backgrounds by vetoing all

. observed electrons for a

DIO tail .+ + pu—e conversion at period of time after the

O 1012 arrival of each proton.

This leads to a fundamental to a
rate limitation.

103

10 2

10

IIlIIIIlI[IIlIl

@ _llllll | IIlllIII I IIIIIIII I 1L

5 90 95 100 105 110 115 120
total e energy in (MeV)

Dy Ti —eTi)

R =
F(/[T I — capture

ue

)< 4.3x107"
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JE
3 Mu2e (MELC) Experimental Technique

® Eliminate prompt beam backgrounds by using a primary
beam consisting of short proton pulses with separation
on the order of a muon life time

~200ns  ~1.5us

D —
A A

D) e se—

Prompt live window
backgrounds

@ Design a transport channel to optimize the transport of
right-sign, low momentum muons from the production
target to the muon capture target.

@ Design a detector which is very insensitive to electrons
from ordinary muon decays

Mu2e Lunch Talk June 22, 2015 18



“ Mu
e

* Muons from bunch are
D captured on nuclei in target

« Wait for prompt backgrounds
to subside

« Look for muons to decay (or

_ /Y convert!)
e

target foils

Mu2e Lunch Talk June 22, 2015 19



JE
iR Our Biggest Issues Decay in Orbit (DIO) MCZ ¢

In-flight Decay: Coherent DIO:

® Very high rate ® Nucleus coherently balances
momentum

@ Rate approaches conversion
(endpoint) energy as
(E E)

@ Drives resolution
requirement.

® Peak energy 52 MeV

® Must design detector to be very
insensitive to these.

conversion~

Mu2e Lunch Talk June 22, 2015 20



L.
38 DIO Spectrum o 2

u Decay 1n Orbit Spectrum =" Al

from free dECay _ at the endpoint

B — B’

conversion

Mu2e Lunch Talk June 22, 2015 21



T
3% Choosing the Capture Target

® Determining the Z dependence is very important, but

@ Lifetime is shorter for high-Z
Decreases useful live window

@ Also, need to avoid background from radiative muon capture

uN —=v Ny —Want M(Z)-M(Z-1)

|_) < signal energy
e(e)

| =Aluminum is nominal choice for Mu2e |

Nucleus (2) 1 Bound Atomic Bind. Conversion Prob decay

R
RM (Al) lifetime Energy(1s) Electron Energy >700 ns

‘ Al(13,27) 1.0 88 us 0.47 MeV 104.97 MeV 0.45 |

Ti(22,~48) 1.7 328 us 1.36 MeV 104.18 MeV 0.16

Au(79,~197) | ~0.8-1.5 | .0726 us 10.08 MeV 95.56 MeV negligible

Mu2e Lunch Talk June 22, 2015 22



. This produces ~ 'hese quickly
Hit a target mostlrzl oions decay to muons

with protons
JT U

e
7T U
T UtV T .= 26ns
2.2 us

;l+
|
:+
+
<

=
S
|

Muons go much further

Mu2e Lunch Talk June 22, 2015

T
3R How do we make muons?
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T
2 Muon Beam Line and Mu2e Detector ”:' Z

Production Solenoid Proton Beam

Detector Solenoid

@ Production Target
Proton beam strikes target, producing mostly pions

@ Production Solenoid

Contains backwards pions/muons and reflects slow forward pions/muons
@ Transport Solenoid

Selects low momentum, negative muons

@ Capture Target, Detector, and Detector Solenoid
Capture muons on Aluminum target and wait for them to decay
Detector blind to ordinary (Michel) decays, with E < %2m c?
Optimized for E ~ m c?

Mu2e Lunch Talk June 22, 2015 24



o
3 Review: Particle Motion in a Solenoidal Field @

® Generally, particles move in a
helical trajectory

MeV /cl/299
p=L; pimy = P
qB B[T]

® For high momentum particles, the curvature is used to
measure the momentum

® Low momentum particles are
effectively “trapped” along }g/

Magneti

field
/'

10 MeV/c particle
will have a radius of
3cminaiT field

the field lines

® A particle trapped along a curved
solenoidal field will drift out of the plane of curvature

with a velocit A A
y ymRxB (>
Can be used to /Vdrift = RB (VII +. VJ_)
resolve charge and

momentum!

Mu2e Lunch Talk June 22, 2015 25



T
3 Target and Heat Shield

@ Produces pions which
decay into muons
@ Tungsten Target
8 kW beam
700 W in target
Radiatively cooled

® Heat Shield
Bronze insert

NODAL SOLUTION L
Temperature Distribution FEE 17 2012
STEP=1
13:20:00
3.3 kW average heat load
TIME=1
TEMP (AVG)
RSYS=0 i1
SMN =35 > X
SMX =39.5197
35 36.0044 37.0088 38.0131 39.0175
35.5022 36.5066 37.5109 38.5153 39.5197
MuZe PS thermal and radiation shield

Mu2e Lunch Talk June 22, 2015 26



L, 3
2t Production Solenoid *}Z

 Axially graded ~5 T solenoid captures low energy backward and
reflected pions and muons, transporting them toward the stopping target

K | \

\ ) | | | Magnetic Gradient

Specification | |

s || s
o || e
|| ammmmy
TS || e
e || comsons
T || GoREES
s || s
s || ey
|| anmmmmy
T || ahm

4.4
2-Lav 2

2-Layer

~

T i f

Cryostat Wall

Magnetic reflection | .
(pinch confinement) start here
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JE
= Transport Solenoid ”gz e

@ Transports muons from production
target to capture target

® Curved solenoid eliminates line-
of-sight backgrounds

® Collimator in center selects low
momentum negative muons

RxB drift causes sigh/momentum
dependent vertical displacement

Mu2e Lunch Talk June 22, 2015 28



H Mu
Stopping (capture) Target Z

Space Frame

® Multiple layers to allow decay
or conversion electrons to exit
with minimal scattering
17 Aluminum foils
200 um thick

® Stops 49% of arriving muons

Proton Absorber

Stopping Target
Bearing Block

Conversion electron spectrum:

14000 —7toiis

12000 | - sfoils

10000_ — 33 foils
8000
6000
4000
2000

f52 102.5 103 103.5 104 104.5 105
p (MeV/c)
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T
3 Detector and Detector Solenofd “:' Z

@ Graded field around stopping target to increase acceptance
Magnetic reflection again

@ Uniform field in tracking volume
@ Electromagnetic calorimeter to identify electrons.

u Stopping

Target Muon Absorber

Tracker EM Calorimeter

Proton
Absorber

Mu2e Lunch Talk June 22, 2015 30



J<
38 Magnetic Field Gradient

6.0
- Decreasing field |
prevents particle
trapping and
4.0 excessive straggling —
B 2 3.0
(T)
2.0
1.0
Production Transport Detector
Solenoid Solenoid Solenoid
0.0 ! !
0 5 10 15 20 25 30

Position (m)
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3
Particle Detector

Helical trajectory

\
\
\

TERTRRRRRRRRRNNN
- .‘.\/\./‘\z

XA

................

I

Conversions hit
multiple planes.

Electromagnetic
Calorimeter to tag
electrons

Most decays (p;<53 MeV/c) go
down the middle (vacuum)

Mu2e Lunch Talk June 22, 2015 32



T
3 Particle Tracking Technology

@ To achieve the required resolution, must keep mass as low as possible
to minimize scattering

® We’ve chosen transverse planes of “straw chambers” (21,600 straws)

90000 OOOOC%

- * Track ionizes gas in tube

€ « Charge drifts to sense
wire at center
@ Advantages « Drift time gives precision
Established technology position

Modular: support, gas, and electronic connections at the ends, outside of
tracking volume

Broken wires isolated

@ Challenges
Our specified wall thickness (15 um) has never been done
Operating in a vacuum may be problematic

Mu2e Lunch Talk June 22, 2015 33



1992
1997

1998-2005
July 2005

2006

October 2007
Fall 2008
November 2008
November 2009
2013

2015

22,2015

JE
a8 A long time coming

Proposed as “MELC” at Moscow Meson Factory

Proposed as “MECO” at Brookhaven

(at this time, experiment incompatible with Fermilab)
Intensive work on MECO technical design

Entire rare-decay program canceled at Brookhaven

MECO subgroup + Fermilab physicists work out means to mount
experiment at Fermilab

MuZ2e letter of intent submitted to Fermilab

MuZ2e Proposal submitted to Fermilab

Stage 1 approval. Formal Project Planning begins

DOE Grants CD-0

DOE Grants CD-1 Start civil and magnet construction

DOE Grants CD-2/3b

Mu2e Lunch Talk 34



Context (evolving slide)

= Fermilab
> Built ~1970
»> 200 GeV proton beams
» Eventually 400 GeV
» Upgraded in 1985
> 900GeV x 900 GeV p-pBar collisions

> Most energetic in the world M

» Upgraded in 1997 until recently
» Main Injector-> more intensity

A > 980 GeV x 980 GeV p-pBar collisions
X™ > Intense neutrino program
A prog

> Sseq Tz pomet L CalIdE

> What next???

» With the LHC now the highest energy
collider, Fermilab must focus on different
types of physics.
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JE
B The Fermilab Accelerator Complex FZ z e

Accumulator (8 GeY)
Debuncher (8 GeY)

tain [nector
b Tev Extract
150 GeY .
Target  Collder Abc
Recycler

oA
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e Accelerates the 400 MeV beam from
the Linac to 8 GeV

« Operates in a 15 Hz offset resonant circuit

« Cannot make required beam structure

» That’s why MECO wasn’t proposed there

e Sets fundamental clock of accelerator
complex

e More or less original equipment

e 40+ years old
 Supplying beam to neutrino program and Mu2e will require ~doubling output
e Hardware limits = Improve RF system

« Radiation limits = Improve acceleration efficiency

= “Proton Improvement Plan” (whole separate talk)
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T
3 Mu2e Proton Delivery

» One Booster “batch” is
injected into the Recycler
(8 GeV storage ring).

* 4x10'2 protons

\ k:

* 1.7 usec long

> |t is divided into 4
bunches of 10'2 each

> These are extracted one
at a time to the Delivery
e Ring
Delivery Ring
(formerly pBar Debuncher) * Period = 1.7 usec
» As a bunch circulates, it is
resonantly extracted to

produce the desired beam
structure.

« Bunches of ~3x107
protons each

» Separated by 1.7 usec
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T
32 Resonant Extraction o 4

Extracting all the beam at once is easy, but

we want to extract it slowly over ~60 ms x'
(~35,000 revolutions)

Use nonlinear (sextupole) magnets to drive a ;
harmonic instability :

Septum Plane 1

Extract unstable beam as it propagates
outward

S,
Xk X,
o 1
S

Standard technique in accelerator physics ) X

Unstable beam motion :
in N(order) turns TExtraction FieldI Extracted beam

Z‘

Lost beam

Septum

B
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3¢ Mu2e Spill Structure o 2

Main Injector Ramp

RR Inject

1.33 sec Main Injector cycle ® Detail:

3x107 p/bunch

1.7 usec bunch spacing
~30% duty factor
~1.2x10%20 protons year

. % 4 ; i —
I Mu2e Batch I NOvA Batch S | ;
(o] 1 |
s @ 90 ms & :
N | :
© —p] |
x -4 159 ms :
2 i i '
@ ! ! NOvA
c | 1 '
2 | ' '
£ | : :
14 | || | | | | C
© 0 R N 1 ! I a
0 1 21 3 4 5 7 8 ' 9
! Time (1/15 Hz ticks) i
- € 497 ms >:
21 4 ’ . |
o
°
o
N
=)
3
> T
(2]
c
8
=
g
g | \ | I
a0 I | |

0 1 2 3 4 5 8
Time (1/15 Hz ticks)
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T
32 Beam line extinction o 4

® A set of resonant dipoles in the beam deflects beam
such that only in-time beam is transmitted through a
system or collimators:

Think miniature golf!

At dipole: At collimator:

In time

@ Use resonant dipoles at two frequencies
Y2 bunch frequency to sweep out of time beam into collimators
High harmonic to reduce motion during transmission window
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JE
3a Extinction Monitor b 4

® Must measure extinction to 10-19 precision
Roughly 1 proton every 300 bunches!

® Monitor sensitive to single particles not feasible
Would have to be blind to the 3x107 particles in the bunch.

® Focus on statistical technique

Design a monitor to detect a small fraction of scattered particles
from target

10-50 per in-time bunch
Good timing resolution

Statistically build up precision profile for in time and out of time
beam.

® Goal
Measure extinction to 1019 precision in one hour.
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JC
3R Extinction Monitor Design @

Filter magnet Monitor
(too small to see) ~
S
N
|\I L]
S Selection
LL [
3 channel built
A4 g into target dump
Proton M ‘% channel
Beam — : o
Primary beam Entry and exit &
absorber collimators

20m

Exit collimator

» Spectrometer
based on ATLAS
pixels

* Optimized for few
GeV/c particles

"’0 —
T

i

- |

- \

| ..
L,/\r/

Silicon sensors (up) Magnet Silicon sensors (down)
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2 End Product

<€ 1695 ns >

Stopping Target

0 ; 0 400 600 800 1000 1200 1400 1600 18t(_)0 2000
e U are accompanied by e’, 1, ... e
e Extinction system makes prompt background ~equal to
all other backgrounds
e 1 out of time proton per 100 in time protons.

e Lifetime of muonic Al: 864 ns.
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T
3 Major Backgrounds
1. Muon decay in orbit (DIO)

uw — evv
Ee < mMCz - ENR - EB
N ~ (Econversion } Ee)5
Fraction within 3 MeV of endpoint ~
5x10-1>

Defeated by good energy resolution Reconstructed momentum
5 4 = T 7.56e+17 stopped muons |— DIO
E. a5 = l 1e-15 Conversion Rate | —— Conversion
i 0.577<tan(A)<1.000 103.50 MeVic < P < 104.70 MeVic
B o3 10>710.0 nsec DIO integral = 0.291+ 0.052
0 nactive>=20 )
E 25 therr<i.5 Conv. integral = 24,365 + 0.335
= fitmomerr<0.2
2 fitcon>1e-4
- t
E i : +++*.++++
1= JU“[ +E++JH+ #
E +i H
asE oot ++++ : HI- :
= et : :
- +*W"++1—++'1'T+++1¢++1'+++‘|+ H ++++:
0 et Tty e . Hob s
_||||||||||||||||||I|||||||||I|||||||||I||II|I|||
101 1015 102 1025 103 1035 104 1045 105 1055 106

Me\ic
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3¢ Backgrounds (cont’d) 5 %

2. Beam Related Backgrounds <— | Goal: Prompt background ~equal
to all other backgrounds

» Radiative = capture:

N —N*y, yZ — ete” v,
* Muon decay in flight: 0 - V,
w — evv W o
- Since E, <m c?/2, p, > 77 GeV/c
« Beam electrons
* Pion decay in flight:
T €7V,
» Suppressed by minimizing beam
between bunches and waiting I —
—Need < 10-"% extinction (see -
previous discussion) ”F
3. Asynchronous Backgrounds | [ 5
« Cosmic rays o
« suppressed by active and

passive shielding

MECO DETECTOR SOLENOD
END YTEW
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38 Pattern Recognition
® All hits from 500-1694 ns

Wi S S Rae

® Hits within +50 ns conversion electron

@A ___=__,.=i“}. Hiok £ -
T A A < F
i’ i ‘a . { h!ﬁpf‘{ ju!jl“"f‘y 00 1
v ey,
g .
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Reconstructed momentum

3 Sensitivity

E TE }l 7.56e+17 stopped muons [— DIO
€ 15 = \ 1e-15 Conversion Rate |—— Conversion
% “| 0.577<tan(1)<1.000 103.50 MeV/c < P < 104.70 MeVic
. . T t0>710.0 nsec - - ;
® Cuts chosen to maximize 5 nactive>=20 bt T
. . § 95 t0err<1.5 Conv. integral = 24.365+ 0.335
= fitmomerr<0.2 :
S]gnflcance 2 fitcon>1e-4
® 3.6x1020 protons on target st it o
. . = t T Ty
3 years nominal running E ++++ o .
0.5 — H|-++‘¥ gt
Er_m#t‘_‘_ - w+w++r+*-r*”+ +++...+++ o i +-+-+.E._._'_
101 101.5 102 102.5 103 103.5 104 104.5 105 105.5 106
MeWic
Parameter Value
Running time @ 2 x 107 s/yr. 3 years
Protons on target per year 1.2 x 107
u- stops in stopping target per proton on target 0.0016
u- capture probability 0.609
Fraction of muon captures in live time window 0.51
ectron Trigger, Selection, and Fittin iciency in Live Window .
Electron Trigger, Select d Fitting Effi y in Live Wind 0.10

Single Event Sensitivity: Rue=2x10'17

Mu2e Lunch Talk June 22, 2015
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3 Significance

® Backgrounds

Background description

Expected events

Muon decay in orbit 0.22 + 0.06
Antiproton induced 0.10 £0.05
Cosmic rays 0.05+0.013
Radiative pion capture 0.03 + 0.007
Muon decay in flight 0.01 +0.003
Pion decay in flight 0.003 +0.0015
Beam electrons 0.0006 + 0.0003
Radiative muon capture <2x10°
Total 0.41 +0.08

® Bottom line:

Single event sensitivity: Rw;_,=2x10'17 / —
90% C.L. (if nosignal) : R <6x10"

Typical SUSY Signal: ~-50 events or more

Mu2e Lunch Talk June 22, 2015

4 order of
magnitude
improvement!
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Operations
Install Detector
............... n_nn.mEPngEnnn_:::::-n:n-:::::
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o
38 | ooking toward the future: Project X o 4

® Maximizing the intensity of the Main Injector will require replacing
Fermilab’s aging proton source.

@ In 2007 the Fermilab Long Range Steering committee endorsed a
design based on a linac incorporating ILC RF technology

Temporarily named “Project X”
@ Specification has undergone many iterations. Current incarnation

3 GaV, 1.0 mA CW Linac

Muon program driven by 3
GeV CW linac beam

Kaons
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Upgrade scenarios
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Yes
® Both prompt and DIO ® Must compare different
backgrounds must be targets.
lowered to measure ® Optimize muon transport
Rpe ~ 1018 and detector for short
® Must upgrade all aspects bound muon lifetimes.
of production, transport ® Backgrounds might not be

and detection. as important.
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3 Target Dependence

V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon., arXiv:0904.0957 [hep-ph];
Phys.Rev. D80 (2009) 013002

013: G. Fogli et al., arXiv:1205.5254
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Figure 3: Target dependence of the 4 — e conversion rate in different single-operator 0 0.05 0.1 0.15 0.2 0.25

dominance models. We plot the conversion rates normalized to the rate in Aluminum
(Z = 13) versus the atomic number Z for the four theoretical models described in the
text: D (blue), S (red), V) (magenta), V(#) (green). The vertical lines correspond to
Z =13 (Al), Z = 22(Ti), and Z = 83 (Pb).

V. Cirigliano, B. Grinstein, G. Isidori, M. Wise

Nucl.Phys.B728:121-134,2005
Now we

know this!
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3 Experimental Challenges for Increased Flux

@ At our level of sensitivity, we hit fundamental limits with this technique
Simply increasing the proton flux will not improve the limit dramatically

@ Improve momentum resolution for the ~100 MeV electrons to reject high
energy tails from ordinary DIO electrons.
Limited by multiple scattering in target and detector plane
=» go to bunched, mono-energetic muon beam, allowing for thinner target

@ Allow longer decay time for pions to decay
@ Both of these lead to a decay/compressor ring

® Other issues with increased flux

Upgrade target and capture solenoid to handle higher proton rate
Target heating
Quenching or radiation damage to production solenoid

High rate detector

@ All of these efforts will benefit immensely from the knowledge and
experience gained during the initial phase of the experiment.

@ If we see a signal a lower flux, can use increased flux to study in detail
Precise measurement of R .
Target dependence

Comparison with u—ey rate
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3¢
Conclusions

@ We have proposed a realistic experiment to measure
I‘(M_Al —e + Al)
he F(M‘Al — (All Captures))

Initial single event sensitivity of R =2x10""/

This represents an improvement of four orders of magnitude compared to the
existing limit, or over a factor of ten in effective mass reach. For comparison
TeV -> LHC = factor of 7
LEP 200 -> ILC = factor of 2.5
@ ANY signal would be unambiguous proof of physics beyond the

Standard Model

@ The absence of a signal would be a very important constraint on
proposed new models.
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“New linac” (HEL)-
Accelerate H- ions from
116 MeV to 400 MeV

“Preac” - Static

Cockroft-Walton o

generator accelerates H-  «gq linac” (LEL)- accelerate

ions from 0 to 750 KeV. H- ions from 750 keV to 116
MeV
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AccumuBtor (5 GeY
Debuncher (8 GeY)

Main Injector/Recycler

Switchyard

BO Detector
and Low Beta

» The|Main Injector|can accept 8 GeV
protons OR antiprotons from

o Booster

¢ The anti-proton accumulator

o Th(ie 8 GeV Recyclern (which shares
the same tunnel and stores
antiprotons)

|t can accelerate protons to 120 GeV (in a
minimum of 1.4 s) and deliver them to

e The antiproton production target.
e The fixed target area.
e The NUMI beamline.

eIt can accelerate protons OR antiprotons
to 150 GeV and inject them into the
Tevatron.
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36| Present Operation of Debuncher/
Accumulator

@ Protons are
accelerated to 120
GeV in Main Injector
and extracted to pBar
target

@ pBars are collected '

and p din /,'
the €Debuncher” J)--"---_ ;

® Transferred to the
“Accumulator”, where
they are cooled and
stacked

@ pBars not used after
collider.

AP10
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L, 3
2e Mu2e in the NOVA era

® Beam Delivered in 15 Hz “batches” from the Fermilab Booster

>

Main Injector Ramp

J Mu2e Batch B NOvA Batch

RR Inject
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(Deflection)/(Collimator Aperture)
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Beam motion in

Collimator
Component Length Frequency Peak Field
Low Frequency 3m 300 kHz 108 Gauss
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700 ns Detector live
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Proton bunches Collimator Material:
— T HI-HS5: steel

— HI-H5>:'W
——— HI1-H3: W, H4-H5: steel

Extinction < 5x10-8 over
range of interest for
optimized collimators

__________ < This is multiplied by the

Delivery Ring factor to
produce a total
extinction of < 5x10-12

500

Time (ns)

@ Additional 102> extinction from beam delivery system
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