
Table of Contents
 EDM Exception Use...1

 Goals of page..1
 Where to find things..1
 Exception classes..1

 cms::Exception...1
 edm::Exception...2

 Exception handling rules...2
 What the framework catches..2
 Altering framework flow..2
 What to propagate..3
 How exceptions will be caught..3

 Currently understood actions..3
 Parameter set options..3
 Framework categories...4
 Notes...4
 Guidelines for category names..4
 Review Status...4

i

EDM Exception Use
Complete:

Goals of page

The SWGuideEdmExceptionAnalysis page explains where this model came from and how it fits into error
and message processing. What is covered here is the "Local change of standard program flow".

Where to find things

CMSSW/FWCore/Utilities/interface/Exception.h: The main exception class cms::Exception is contained
here. There is documentation at the top of the file that explains its use.

CMSSW/FWCore/Utilities/CodedException.h: A class that allowed the category types to be enumerated
(instead of being std::strings).

CMSSW/FWCore/Utilities/test/ExceptionDerived.cpp: An example of how to make an exception class that
is derived from cms::Exception.

Exception classes

The exception hierarchy is small:

 (A --> B means "A is derived from B")

 edm::Exception --> cms::Exception --> std::exception

cms::Exception

This is the framework's main exception class. The Framework can recognize information contained within this
exception and take appropriate action. This class should be used directly or as a base class for new exception
types. _Any exception allowed to propagate from a processing module should be a cms::Exception or
something derived from it. The action that the framework takes when one of these exceptions is caught is
based on a category string given in the constructor.

Example use:

 if(something wrong with data in the event)
 throw cms::Exception("CorruptData")
 << "It seems as though something is dreadfully wrong.\n"
 << "Unknown ID " << x << " found\n"
 else if(too much time)
 throw cms::Exception("Timeout")
 << "Taking too long to process "
 << y << " number of hits\n";

The first argument in the constructor is the category. Guidelines for providing good category names will be
given later in this document. The category name can be thought of as the general name of the problem. A
category should exist for each unique type of action that might be configured.

This exception type (or anything derived from it) allows any object with a stream insertion operator
(operator<<) defined to be added to the exception object directly from the constructor call as shown in the
code segment.

 EDM Exception Use 1

https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideEdmExceptionAnalysis

If you want to establish an exception hierarchy, the base class should be cms::Exception if you allow any of
the exceptions to leave your code. The documentation in the header file for this exception explains further
how to use this class as a base class. You must propagate a category name to the base class for each unique
derived class. One easy way to do this is to use the derived class name as the category name.

edm::Exception

Exceptions that are generated from calls to framework functions (e.g. access to products in the event) are of
this type. The edm::Exception is actually a typedef for the class template CodedException. This template
allows an enum to be used instead of strings for category names.

Exception handling rules

Developers in general should not catch exceptions. As described below, the framework itself is
responsible for catching exceptions in a configurable way.

•

Developers should throw cms::Exceptions whenever they think they will not be able to perform the
task they were called to do (eg. produce an object to be put into the event)

•

What the framework catches

The framework catches a fixed set of exceptions at every important place in its call stack. The exceptions
caught are:

edm::Exception•
cms::Exception•
std::exception•

The important places these exceptions are caught include

code surrounding a call to a processing module•
the schedule executor•
the event loop•
the cmsRun application•

The cms::Exception allows for nesting or concatenation of exception information. At each place mentioned
above, the framework will throw a new cms::Exception (if the cooresponding action is to do so) with the
caught exception contents plus new context information. New context information may include:

event ID (collision ID and relevant time stamps)•
active module type•
active module label•
current path•
product being operated on•
report on the action taken•

depending on where the exception was caught. The final exception printout will contain a trace of all
exceptions caught.

Altering framework flow

Currently only a filter module can change the flow of control in an EventProcessor. This is an event pass/no
pass return code and is not considered an error condition. The only way to change the framework flow outside
this specific case without terminating the job (actually exiting the EventProcessor) is to throw something that

cms::Exception 2

https://twiki.cern.ch/twiki/bin/view/CMS/EventProcessor
https://twiki.cern.ch/twiki/bin/view/CMS/EventProcessor

is a cms::Exception. Private or vendor specific exceptions should not be allowed to escape out of a module
because the framework will not know what to do with them and valuable context information may not be
reported in a useful way. This is very rare, but if you do invoke code that will throw an unrecognized
exception it should be caught and rethrown as the known exception, cms::Exception.

What to propagate

The module developers propagate high-level announcements of what has happened. They should not throw
any sort of resolution - this action is up to the user configuring the job, not up to the code developer.

How exceptions will be caught

All exceptions will be caught by reference (non-constant).

Currently understood actions

There is currently a fixed set of actions that can be assigned to any of the category names found delivered in a
cms::Exception. The framework currently understands the following actions.

Rethrow: let the caller deal with the exception (This terminates the job with a non-zero return code).•
SkipEvent: stop further processing of this event and continue with the next event•
FailPath: stop processing in the path and mark it as failed, and continue witht he next path•
FailModule: stop the module and mark it as failed, and proceed with the next module•
IgnoreCompletely: pretend the exception never happened (if possible)•

These actions apply for exceptions thrown while a module (e.g. an EDProducer, EDFilter, EDAnalyzer, or
OutputModule) or input source is processing an event. Exceptions thrown at other times, such as when
processing a begin or end Run, always result in a Rethrow action. NOTE: Prior to CMSSW_3_1_0_pre10,
exceptions thrown while processing an input source would always be rethrown.

The above actions occur as stated if thrown during module execution on a path (as opposed to an endpath). If
thrown during the execution of an input source, there is no path involved, so FailPath or FailModule is treated
as SkipEvent. If thrown while executing a module on an endpath, FailPath or SkipEvent is treated as
FailModule, so that other modules on the endpath are unaffected.

Parameter set options

Each of the exception categories can be assigned an associated action at runtime. The syntax for making the
assignment is as follows.

Warning: The "options" pset below is untracked. This reflects the latest prerelease. It is possible that older
prereleases require the word untracked to not be there.

 # if "options" is present, the framework will use it
 options = cms.untracked.PSet(
 # skip the event if processing modules produce
 # category "A", "B", or "C" exceptions
 SkipEvent = cms.vstring("A", "B", "C"),
 FailModule = cms.vstring("Q")
)

The framework will look for string vectors for each of the actions names it understands. The vectors contain
the category names that will be assigned to that action.

Altering framework flow 3

Framework categories

The edm/framework produces exceptions with the following category names. Next to each is the default
action taken by the framework: The default action for any exception not found on this list is 'Rethrow'.

Category Name Default Action
ProductNotFound Skip Event
DictionaryNotFound Rethrow (stops the job)
NoProductSpecified Rethrow (stops the job)
InsertFailure Rethrow (stops the job)
Configuration Rethrow (stops the job)
LogicError Rethrow (stops the job)
UnimplementedFeature Rethrow (stops the job)
InvalidReference Skip Event
NullPointerError Skip Event
NoProductSpecified Rethrow (stops the job)
EventTimeout Skip Event
EventCorruption Skip Event
FileInPathError Rethrow (stops the job)
FileOpenError Rethrow (stops the job)
FileReadError Rethrow (stops the job)
FatalRootError Rethrow (stops the job)
MismatchedInputFIles Rethrow (stops the job)
ProductDoesNotSupportViews Rethrow (stops the job)
ProductDoesNotSupportPtr Rethrow (stops the job)
NotFound Skip Event

Notes

The FileOpenError, FileReadError, FatalRootError, and MismatchedInputFIles categories were added
for CMSSW_2_1_10. They do not exist in prior releases..

We do not yet support installing user-supplied callback objects for actions. This addition would allow user
code to be invoked, most likely with the current event, when an action is about to be taken as a result of an
exception being caught.

Guidelines for category names

This section is not complete. There is some information about naming categories in the
SWGuideEdmExceptionAnalysis page.

Review Status

Reviewer/Editor and Date (copy from screen) Comments
Main.jbk - 02 Sep 2006 page author
JennyWilliams - 31 Jan 2007 editing to include in SWGuide
Main.wmtan - 09 Oct 2008 bring up to date
ChrisDJones - 12-Nov-2009 switched to python config language

 Framework categories 4

https://twiki.cern.ch/twiki/bin/genpdfauth/CMS/SWGuideEdmExceptionUse?skin=pattern;cover=print;sortcol=0;table=1;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/genpdfauth/CMS/SWGuideEdmExceptionUse?skin=pattern;cover=print;sortcol=1;table=1;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideEdmExceptionAnalysis
https://twiki.cern.ch/twiki/bin/genpdfauth/CMS/SWGuideEdmExceptionUse?skin=pattern;cover=print;sortcol=0;table=2;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/genpdfauth/CMS/SWGuideEdmExceptionUse?skin=pattern;cover=print;sortcol=1;table=2;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/view/Main/JennyWilliams
https://twiki.cern.ch/twiki/bin/view/Main/ChrisDJones

Responsible: Main.jbk
Last reviewed by: Reviewer

This topic: CMS > SWGuideEdmExceptionUse
Topic revision: r22 - 12-Nov-2009 - 14:56:44 - ChrisDJones

Copyright &© by the contributing authors. All material on this collaboration platform is the
property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

Review Status 5

https://twiki.cern.ch/twiki/bin/view/Main/ChrisDJones
http://twiki.org/
mailto:TWiki.Support@cern.ch?subject=TWiki%20Feedback%20on%20CMS.SWGuideEdmExceptionUse

	Table of Contents
	 EDM Exception Use
	 Goals of page
	 Where to find things
	 Exception classes
	 cms::Exception
	 edm::Exception

	 Exception handling rules
	 What the framework catches
	 Altering framework flow
	 What to propagate
	 How exceptions will be caught

	 Currently understood actions
	 Parameter set options
	 Framework categories
	 Notes
	 Guidelines for category names
	 Review Status

